The East Bay Children's Respiratory Health Study Traffic-Related Air Pollution Near Busy Roads

December 9, 2004

Air Resources Board

California Environmental Protection Agency

Background

- Association between traffic and respiratory disease
 - mostly European Studies
- Ambient monitors
 - typically do not measure direct impact of traffic
- Surrogate measures of traffic pollution
 - residential proximity, traffic volume
- Question of extrapolation to U.S.
 - traffic mix, emission controls, population may differ
- Need to evaluate health impacts of proximity to traffic

Methods

- Cross-sectional study in Alameda County
 - > 1,109 students between 3rd 5th grades
- School selection criteria (10 schools)
 - distance from major roads and highways
 - similar demographics across schools
- Surveyed child and parent
 - history, home environment, and demographics
- Air pollutants measured at the schools
 - ➤ PM10, PM2.5, NO_x, NO₂, NO, and black carbon
- Moderate regional air pollution levels

Population

Race/Ethnicity

White 13 %

Black 11 %

Hispanic 44 %

Asian 14 %

Other 19 %

SES indicators

- Household at/below Federal poverty level of 31%
- Parent's education: high school or less equaled 49%

Results

- Schools downwind and near major roadways had higher concentrations of black carbon, NO_X, and NO
- Found a 5 to 8% increase in asthma and bronchitis symptoms with exposure to these traffic-related pollutants
- Suggest that fresh traffic emissions may play a role in these relationships
- ARB supporting a new study to improve exposure estimates for the East Bay Children's Study

Brett C. Singer, et al. "Passive measurement of nitrogen oxides to assess traffic-related pollutant exposure for the East Bay Children's Respiratory Health Study," Atmospheric Environment 38 (2004) 393–403

Kim, et al. "Traffic-related Air Pollution near Busy Roads, The East Bay Children's respiratory Health Study," American Journal of Respiratory and Critical Care Medicine, Vol. 170, 2004.

Black Carbon Decreases with Distance from Highway

Zhu, et al.," Study of ultrafine particles near a major highway with heavy-duty diesel traffic, Atmospheric Environment," 36, (2002) 4323-4335

Implications

- Findings are consistent with previous investigations in Europe
- Helped support passage of a School Siting Bill by Senator Escutia (SB 352)
 - > 500 foot setbacks from freeways improve children's health
- Supports need for additional measures that reduce emissions and exposures to traffic air pollution in order to improve children's health

The East Bay Children's Respiratory Health Study Traffic-Related Air Pollution Near Busy Roads